Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5.

نویسندگان

  • S Tajbakhsh
  • U Borello
  • E Vivarelli
  • R Kelly
  • J Papkoff
  • D Duprez
  • M Buckingham
  • G Cossu
چکیده

Activation of myogenesis in newly formed somites is dependent upon signals derived from neighboring tissues, namely axial structures (neural tube and notochord) and dorsal ectoderm. In explants of paraxial mesoderm from mouse embryos, axial structures preferentially activate myogenesis through a Myf5-dependent pathway and dorsal ectoderm preferentially through a MyoD-dependent pathway. Here we report that cells expressing Wnt1 will preferentially activate Myf5 while cells expressing Wnt7a will preferentially activate MyoD. Wnt1 is expressed in the dorsal neural tube and Wnt7a in dorsal ectoderm in the early embryo, therefore both can potentially act in vivo to activate Myf5 and MyoD, respectively. Wnt4, Wnt5a and Wnt6 exert an intermediate effect activating both Myf5 and MyoD equivalently in paraxial mesoderm. Sonic Hedgehog synergises with both Wnt1 and Wnt7a in explants from E8.5 paraxial mesoderm but not in explants from E9.5 embryos. Signaling through different myogenic pathways may explain the rescue of muscle formation in Myf5 null embryos, which do not form an early myotome but later develop both epaxial and hypaxial musculature. Explants of unsegmented paraxial mesoderm contain myogenic precursors capable of expressing MyoD in response to signaling from a neural tube isolated from E10.5 embryos, the developmental stage when MyoD is present throughout the embryo. Myogenic cells cannot activate MyoD in response to signaling from a less mature neural tube. Together these data suggest that different Wnt molecules can activate myogenesis through different pathways such that commitment of myogenic precursors is precisely regulated in space and time to achieve the correct pattern of skeletal muscle development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wnt signaling and the activation of myogenesis in mammals.

In the amniote embryos, specification of skeletal myoblasts occurs in the paraxial mesoderm in response to a number of signaling molecules produced by neighboring tissues such as neural tube, notochord and dorsal ectoderm. Candidate molecules for this complex signaling activity include Sonic hedgehog, Wnts and Noggin as positive activators and BMP4 as a possible inhibitor. Recently, the recepto...

متن کامل

vivo, we developed a method based on the overexpression of the soluble antagonist by transient transfection of WOP cells with a Frzb1 expression vector and injection of transfected cells into the placenta of pregnant females

There is increasing evidence for a positive role of Wnt signaling molecules in the activation of myogenesis in amniote embryos (Münsterberg et al., 1995; Stern et al., 1995; Capdevila et al., 1998; Tajbakhsh et al., 1998), but the mechanism of this process remains elusive. At least another molecule, Sonic hedgehog, is also required to initiate myogenesis in the presomitic mesoderm (Borycki et a...

متن کامل

Induced early expression of mrf4 but not myog rescues myogenesis in the myod/myf5 double-morphant zebrafish embryo.

Muscle regulatory factors activate myogenesis in all vertebrates, but their role has been studied in great detail only in the mouse embryo, where all but myogenin--Myod, Myf5 and Mrf4--are sufficient to activate (albeit not completely) skeletal myogenesis. In the zebrafish embryo, myod and myf5 are required for induction of myogenesis because their simultaneous ablation prevents muscle developm...

متن کامل

Pitx2 defines alternate pathways acting through MyoD during limb and somitic myogenesis.

The MyoD gene is part of the core regulatory network that governs skeletal myogenesis and acts as an essential determinant of the myogenic cell fate. Although generic regulatory networks converging on this gene have been described, the specific mechanisms leading to MyoD expression in muscles of different ontology remain misunderstood. We now show that the homeobox gene Pitx2 is required for in...

متن کامل

Musculin and TCF21 coordinate the maintenance of myogenic regulatory factor expression levels during mouse craniofacial development.

The specification of the skeletal muscle lineage during craniofacial development is dependent on the activity of MYF5 and MYOD, two members of the myogenic regulatory factor family. In the absence of MYF5 or MYOD there is not an overt muscle phenotype, whereas in the double Myf5;MyoD knockout branchiomeric myogenic precursors fail to be specified and skeletal muscle is not formed. The transcrip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 125 21  شماره 

صفحات  -

تاریخ انتشار 1998